
Natural Language Processing
with Deep Learning

IFT6289, Winter 2022

Lecture 7: Transformer and BERT
Bang Liu

2

Recap: Mini-Lectures
๏The mini-lectures will take place at Feb 18th, Feb 22th and Feb 25th, with each

class presenting 6~7 papers. After all groups decide their paper selection, we
will release the presentation order on this Thursday.

๏The mini-lecture presentation accounts for 3 reading assignments, which means
it is worth 3 points of your final grade. Our evaluation will focus on the
contents and clarity of your slides, and the quality of your presentation
delivery.

๏Each presentation should be no more than 17 minutes (~15min presentation +
~2min Q&A). Please don't exceed this time limit, or it would occupy other
groups' time and also may affect your presentation score.

๏For each group, no matter when your presentation takes place, please submit
your slides before 11:59am, Feb 18th (Fri.) in #mini-lectures Please indicate
your group number in your file name (e.g., Group1_What Does BERT Look
At.pdf). Late submission of the slides results in a -1 point penalty.

3

Lecture outline

1. Transformer
2. BERT and a Few Variants

Transformer

Recap Attention
Mechanism

6

Recap Attentions
The most popular ways to compute attention scores are:
• dot-product - the simplest method;
• bilinear function (aka "Luong attention") - used in the paper Effective Approaches to Attention-based

Neural Machine Translation;
• multi-layer perceptron (aka "Bahdanau attention") - the method proposed in the original paper.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1508.04025
https://arxiv.org/pdf/1409.0473.pdf

7

Bahdanau Model

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

8

Luong Model

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Transformer:
Attention is All You Need

10

What is Transformer
๏ A model introduced in the paper “Attention is All You Need” in 2017.
๏ Based solely on attention mechanisms (i.e., no recurrence or convolutions).
๏ Higher translation quality, faster to train.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

11 https://ai.googleblog.com/2017/08/transformer-novel-neural-network.htmlThe animation is from the Google AI blog post.

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

12

What We Just Saw

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

13

Why Such Design
๏ RNN won’t understand what “bank” means until they read the whole sentence.
๏ Transformer’s encoder tokens interact with each other all at once.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

How to Implement

15

Self-Attention: the "Look at Each Other" Part
๏ Self-attention is one of the key components of the model.
๏ The difference between attention and self-attention is that self-attention operates between

representations of the same nature: e.g., all encoder states in some layer.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

16

Self-Attention: the "Look at Each Other" Part
๏ Self-attention is the part of the model where tokens interact with each other.
๏ Each token "looks" at other tokens in the sentence with an attention mechanism, gathers context,

and updates the previous representation of “self".
๏ Note that in practice, this happens in parallel.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

17

Query, Key, and Value in Self-Attention

๏ Each input token in self-attention receives three representations corresponding to the roles it can
play:

• query - asking for information;

• key - saying that it has some information;

• value - giving the information.

๏ The query is used when a token looks at others - it's seeking the information to understand itself
better.

๏ The key is responding to a query's request: it is used to compute attention weights.
๏ The value is used to compute attention output: it gives information to the tokens which "say" they

need it (i.e. assigned large weights to this token).

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

18 https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

19

Masked Self-Attention
"Don't Look Ahead" for the Decoder

๏ In the decoder, there's also a self-attention
mechanism: it is the one performing the "look at the
previous tokens" function.

๏ In the decoder, self-attention is a bit different from
the one in the encoder. While the encoder
receives all tokens at once and the tokens can look
at all tokens in the input sentence, in the decoder,
we generate one token at a time: during
generation, we don't know which tokens we'll
generate in future.

๏ To forbid the decoder to look ahead, the model uses
masked self-attention: future tokens are masked
out. Look at the illustration.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

20

But How Can The Decoder Look Ahead?

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

๏ During generation, it can't - we don't know what comes next.

๏ But in training, we use reference translations (which we know). Therefore, in training, we feed the
whole target sentence to the decoder - without masks, the tokens would "see future", and this is not
what we want.

๏ This is done for computational efficiency: the Transformer does not have a recurrence, so all
tokens can be processed at once. This is one of the reasons it has become so popular for machine
translation - it's much faster to train than the once dominant recurrent models. For recurrent models,
one training step requires O(len(source) + len(target)) steps, but for Transformer, it's O(1), i.e.
constant.

21

Multi-Head Attention
Independently Focus on Different Things

๏ Usually, understanding the role of a word in a
sentence requires understanding how it is related to
different parts of the sentence.

๏ This is important not only in processing source
sentence but also in generating target. For example,
in some languages, subjects define verb inflection
(e.g., gender agreement), verbs define the case of
their objects, and many more. What I'm trying to say
is: each word is part of many relations.

๏ Therefore, we have to let the model focus on
different things: this is the motivation behind Multi-
Head Attention. Instead of having one attention
mechanism, multi-head attention has several
"heads" which work independently.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

22

Multi-Head Attention
Independently Focus on Different Things

๏ Formally, this is implemented as several attention mechanisms whose results are combined:

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

23

Transformer: Model Architecture

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

24

Transformer: Feed-forward Blocks

๏ In addition to attention, each layer has a feed-
forward network block: two linear layers with ReLU
non-linearity between them:

๏ After looking at other tokens via an attention
mechanism, a model uses an FFN block to process
this new information (attention - "look at other tokens
and gather information", FFN - "take a moment to
think and process this information").

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

25

Transformer: Residual Connections
๏ Residual connections are very simple (add a

block's input to its output), but at the same time
are very useful: they ease the gradient flow through
a network and allow stacking a lot of layers.

๏ In the Transformer, residual connections are used
after each attention and FFN block. On the
illustration above, residuals are shown as arrows
coming around a block to the yellow "Add & Norm"
layer. In the "Add & Norm" part, the "Add" part
stands for the residual connection.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

๏ Residual connections are thought to make the loss
landscape considerably smoother (thus easier
training!)

[Loss landscape visualiza1on, Li et al., 2018, on a ResNet]

https://arxiv.org/pdf/1712.09913.pdf

26

Transformer: Layer Normalization

๏ The "Norm" part in the "Add & Norm" layer denotes
Layer Normalization. It independently normalizes
vector representation of each example in batch -
this is done to control "flow" to the next layer. Layer
normalization improves convergence stability and
sometimes even quality.

๏ In the Transformer, you have to normalize vector
representation of each token. Additionally, here
LayerNorm has trainable parameters, and

, which are used after normalization to rescale
layer's outputs (or the next layer's inputs). Note that

 and are evaluated for each example, but
and are the same - these are layer parameters.

<latexit sha1_base64="vlmSKKbuh14aOwIdJXmlxfC487U=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cKpi20oWy2k3bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+m/ntJ1SaJ/LRTFIMYjqUPOKMGiv5mlGB/WrNrbtzkFXiFaQGBZr96ldvkLAsRmmYoFp3PTc1QU6V4UzgtNLLNKaUjekQu5ZKGqMO8vmxU3JmlQGJEmVLGjJXf0/kNNZ6Eoe2M6ZmpJe9mfif181MdBPkXKaZQckWi6JMEJOQ2edkwBUyIyaWUKa4vZWwEVWUGZtPxYbgLb+8SloXde+q7j5c1hq3RRxlOIFTOAcPrqEB99AEHxhweIZXeHOk8+K8Ox+L1pJTzBzDHzifP923jrg=</latexit>

scale
<latexit sha1_base64="T7vz5agaDlm1hJs/x6PaXw7Nqzc=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoseiF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+UWltfWNzq7xd2dnd2z+oHh61TZxqylo0FrHuhsQwwRVrWW4F6yaaERkK1gknd7nfeWLa8Fg92mnCAklGikecEptLISdmUK15dW8OvEr8gtSgQHNQ/eoPY5pKpiwVxJie7yU2yIi2nAo2q/RTwxJCJ2TEeo4qIpkJsvmtM3zmlCGOYu1KWTxXf09kRBozlaHrlMSOzbKXi/95vdRGN0HGVZJapuhiUZQKbGOcP46HXDNqxdQRQjV3t2I6JppQ6+KpuBD85ZdXSfui7l/VvYfLWuO2iKMMJ3AK5+DDNTTgHprQAgpjeIZXeEMSvaB39LFoLaFi5hj+AH3+ABffjkU=</latexit>

bias

<latexit sha1_base64="DhfmYH/GZMljh+BkLXk1hbyYDcc=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKosegF48R3CSQLGF2MpsMmZld5iGEJd/gxYMiXv0gb/6Nk2QPmljQUFR1090VZ5xp4/vfXmltfWNzq7xd2dnd2z+oHh61dGoVoSFJeao6MdaUM0lDwwynnUxRLGJO2/H4bua3n6jSLJWPZpLRSOChZAkj2Dgp7AnbH/erNb/uz4FWSVCQGhRo9qtfvUFKrKDSEI617gZ+ZqIcK8MIp9NKz2qaYTLGQ9p1VGJBdZTPj52iM6cMUJIqV9Kgufp7IsdC64mIXafAZqSXvZn4n9e1JrmJciYza6gki0WJ5cikaPY5GjBFieETRzBRzN2KyAgrTIzLp+JCCJZfXiWti3pwVfcfLmuN2yKOMpzAKZxDANfQgHtoQggEGDzDK7x50nvx3r2PRWvJK2aO4Q+8zx/dlI64</latexit>µk
<latexit sha1_base64="F/R+D7/mP+4p1Tqj5UpSsEsm7Io=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0TJoYxnBxEByhLnNXrJkd+/c3RNCyJ+wsVDE1r9j579xk1yhiQ8GHu/NMDMvSgU31ve/vcLK6tr6RnGztLW9s7tX3j9omiTTlDVoIhLditAwwRVrWG4Fa6WaoYwEe4iGN1P/4YlpwxN1b0cpCyX2FY85ReukVsfwvsTusFuu+FV/BrJMgpxUIEe9W/7q9BKaSaYsFWhMO/BTG45RW04Fm5Q6mWEp0iH2WdtRhZKZcDy7d0JOnNIjcaJdKUtm6u+JMUpjRjJynRLtwCx6U/E/r53Z+Cocc5Vmlik6XxRngtiETJ8nPa4ZtWLkCFLN3a2EDlAjtS6ikgshWHx5mTTPqsFF1b87r9Su8ziKcATHcAoBXEINbqEODaAg4Ble4c179F68d+9j3lrw8plD+APv8wcfDpAF</latexit>�k

<latexit sha1_base64="vlmSKKbuh14aOwIdJXmlxfC487U=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cKpi20oWy2k3bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+m/ntJ1SaJ/LRTFIMYjqUPOKMGiv5mlGB/WrNrbtzkFXiFaQGBZr96ldvkLAsRmmYoFp3PTc1QU6V4UzgtNLLNKaUjekQu5ZKGqMO8vmxU3JmlQGJEmVLGjJXf0/kNNZ6Eoe2M6ZmpJe9mfif181MdBPkXKaZQckWi6JMEJOQ2edkwBUyIyaWUKa4vZWwEVWUGZtPxYbgLb+8SloXde+q7j5c1hq3RRxlOIFTOAcPrqEB99AEHxhweIZXeHOk8+K8Ox+L1pJTzBzDHzifP923jrg=</latexit>

scale
<latexit sha1_base64="T7vz5agaDlm1hJs/x6PaXw7Nqzc=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoseiF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+UWltfWNzq7xd2dnd2z+oHh61TZxqylo0FrHuhsQwwRVrWW4F6yaaERkK1gknd7nfeWLa8Fg92mnCAklGikecEptLISdmUK15dW8OvEr8gtSgQHNQ/eoPY5pKpiwVxJie7yU2yIi2nAo2q/RTwxJCJ2TEeo4qIpkJsvmtM3zmlCGOYu1KWTxXf09kRBozlaHrlMSOzbKXi/95vdRGN0HGVZJapuhiUZQKbGOcP46HXDNqxdQRQjV3t2I6JppQ6+KpuBD85ZdXSfui7l/VvYfLWuO2iKMMJ3AK5+DDNTTgHprQAgpjeIZXeEMSvaB39LFoLaFi5hj+AH3+ABffjkU=</latexit>

bias

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

27

Transformer: Positional Encoding

๏ Note that since Transformer does not contain
recurrence or convolution, it does not know the
order of input tokens.

๏ Therefore, we have to let the model know the
positions of the tokens explicitly. For this, we have
two sets of embeddings: for tokens (as we always
do) and for positions (the new ones needed for this
model). Then input representation of a token is the
sum of two embeddings: token and positional.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

28

Transformer: Positional Encoding
๏ The positional embeddings can be learned, but the authors found that having fixed ones does not

hurt the quality. The fixed positional encodings used in the Transformer are:

๏ where is position and is the vector dimension. Each dimension of the positional encoding
corresponds to a sinusoid, and the wavelengths form a geometric progression from 2π to 10000 · 2π.

<latexit sha1_base64="NecrS8lXD2y3gCX+avnoJKSs3kY=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0TJoYxnRmEByhL3NXLJkb/fY3RNCyE+wsVDE1l9k579xk1yhiQ8GHu/NMDMvSgU31ve/vcLK6tr6RnGztLW9s7tX3j94NCrTDBtMCaVbETUouMSG5VZgK9VIk0hgMxreTP3mE2rDlXywoxTDhPYljzmj1kn3qTLdcsWv+jOQZRLkpAI56t3yV6enWJagtExQY9qBn9pwTLXlTOCk1MkMppQNaR/bjkqaoAnHs1Mn5MQpPRIr7UpaMlN/T4xpYswoiVxnQu3ALHpT8T+vndn4KhxzmWYWJZsvijNBrCLTv0mPa2RWjByhTHN3K2EDqimzLp2SCyFYfHmZPJ5Vg4uqf3deqV3ncRThCI7hFAK4hBrcQh0awKAPz/AKb57wXrx372PeWvDymUP4A+/zB30qje4=</latexit>pos <latexit sha1_base64="+zurWilw9p5vBDmM8otw7laiJWA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzU4P1yxa26c5BV4uWkAjnq/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELuWShqh9rP5oVNyZpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTcmG4C2/vEpaF1Xvquo2Liu12zyOIpzAKZyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/gfP4A0M+M8Q==</latexit>

i

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

29

Transformer: Positional Encoding

๏ Fixed positional encoding

• Pros: Periodicity indicates that maybe “absolute position” isn’t as important

• Pros: Maybe can extrapolate to longer sequences as periods restart!

• Cons: Not learnable; also the extrapolation doesn’t really work!

๏ Learned absolute position representations

• Pros: Flexibility: each position gets to be learned to fit the data

• Cons: Definitely can’t extrapolate to indices outside 1, ... , 𝑇.

• Most systems use this.

๏ Sometimes people try more flexible representations of position:

• Relative linear position attention [Shaw et al., 2018]

• Dependency syntax-based position [Wang et al., 2019]

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf

30

Subword Segmentation: Byte Pair Encoding
๏ A model has a predefined vocabulary of tokens.
๏ Tokens not in the vocabulary will be replaced with a special UNK ("unknown") token.
๏ Therefore, if your tokens are words, you will be able to process a fixed number of words.
๏ This is the fixed vocabulary problem : you will be getting lot's of unknown tokens, and your

model won't translate them properly.

๏ But how can we represent all words, even those we haven't seen in the training data?
๏ Well, even if you are not familiar with a word, you are familiar with the parts it consists of -

subwords (in the worst case, symbols). Then why don't we split the rare and unknown words into
smaller parts?

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

31

Subword Segmentation: Byte Pair Encoding
๏ The original Byte Pair Encoding (BPE) (Gage, 1994) is a simple data compression technique that

iteratively replaces the most frequent pair of bytes in a sequence with a single, unused byte. What
we refer to as BPE now is an adaptation of this algorithm for word segmentation. Instead of
merging frequent pairs of bytes, it merges characters or character sequences.

๏ BPE algorithm consists of two parts:

• training - learn "BPE rules", i.e., which pairs of symbols to merge;

• inference - apply learned rules to segment a text.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

32

Training: Learn BPE Rules

๏ At this step, the algorithm builds a merge table and a vocabulary of tokens. The initial vocabulary
consists of characters and an empty merge table. At this step, each word is segmented as a
sequence of characters. After that, the algorithm is as follows:

• count pairs of symbols: how many times each pair occurs together in the training data;

• find the most frequent pair of symbols;

• merge this pair - add a merge to the merge table, and the new token to the vocabulary.

๏ In practice, the algorithm first counts how many times each word appeared in the data. Using this
information, it can count pairs of symbols more easily. Note also that the tokens do not cross word
boundary - everything happens within words.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

33

Training: Learn BPE Rules
๏ Here I show you a toy example: here we assume that in training data, we met cat 4 times, mat 5

times and mats, mate, ate, eat 2, 3, 3, 2 times, respectively. We also have to set the maximum
number of merges we want; usually, it's going to be about 4k-32k depending on the dataset size,
but for our toy example, let's set it to 5.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

34

Inference: Segment a Text
๏ After learning BPE rules, you have a merge table - now,

we will use it to segment a new text.

๏ The algorithm starts with segmenting a word into a
sequence of characters. After that, it iteratively makes
the following two steps until no merge it possible:

• among all possible merges at this step, find the
highest merge in the table;

• apply this merge.

๏ Note that the merge table is ordered - the merges that
are higher in the table were more frequent in the data.
That's why in the algorithm, merges that are higher have
higher priority: at each step, we merge the most
frequent merge among all possible.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

35

Make BPE Stochastic: Segment Words Differently
๏ The standard BPE segmentation is deterministic: at each

step, it always picks the highest merge in the table.
However, even with the same vocabulary, a word can have
different segmentations, e.g. un relat ed, u n relate d, un
rel ated, etc.).

๏ Possible reasons why showing different segmentations of the
same word can help a model are:

• with different segmentations of a word, a model can better
understand the subwords it consists of. Therefore, it can
better understand word composition.

• since only rare and unknown words are split into
subwords, a model may not learn representations for
subwords very well. With different segmentations, it will
see subwords in many different contexts and will
understand them better.

• this may serve as a regularization - a model will learn not
to over-rely on individual tokens and to consider a broader
context (similar to the standard word dropout).

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

36

BPE-Dropout
Drop Some Merges From The Merge Table

๏ BPE-Dropout: Simple and Effective Subword Regularization (ACL 2020).
๏ The idea is very simple: if BPE is deterministic because we pick the highest merge, all we need to do

is to (sometimes) pick other merges. For this, the authors randomly drop some merges (e.g., 10% of
all merges) from the BPE merge table. In this case, the highest merge is sometimes dropped from the
table, we'll have to pick the other one, and the segmentation will be different.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Great Results with
Transformers

38

Great Results with Transformers

Vaswani et al., Attention Is All You Need

Machine Translation

39

Great Results with Transformers

Liu et al. ICLR 2018: Generating Wikipedia by Summarizing Long Sequences

Document Generation

https://arxiv.org/pdf/1801.10198.pdf

40

Great Results with Transformers

Vaswani et al., Attention Is All You Need

GLUE

Analysis and Interpretability

42

Multi-Head Self-Attention
What are these heads doing?

๏ Multi-head attention is an inductive bias
introduced in the Transformer.

๏ When creating an inductive bias in a model,
we usually have some kind of intuition for why
we think this new model component, inductive
bias, could be useful.

๏ Therefore, it's good to understand how this
new thing works - does it learn the things we
thought it would? If not, why it helps? If yes,
how can we improve it?

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

43

The Most Important Heads are Interpretable
๏ Here we'll mention some of the results from the ACL 2019 paper Analyzing Multi-Head Self-

Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned. The authors look at
individual attention heads in encoder's multi-head attention and evaluate how much, on average,
different heads "contribute" to generated translations (for the details on how exactly they did this,
look in the paper or the blog post). As it turns out,

• only a small number of heads are important for translation,

• these heads play interpretable “roles”.

๏ These roles are:

• positional: attend to a token's immediate neighbors, and the model has several such heads
(usually 2-3 heads looking at the previous token and 2 heads looking at the next token);

• syntactic: learned to track some major syntactic relations in the sentence (subject-verb, verb-
object);

• rare tokens: the most important head on the first layer attends to the least frequent tokens in a
sentence.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

https://www.aclweb.org/anthology/P19-1580/
https://www.aclweb.org/anthology/P19-1580/

https://lena-voita.github.io/posts/acl19_heads.html

Positional heads

45

subject -> verb verb -> subject

subject -> verb verb -> subject
https://lena-voita.github.io/posts/acl19_heads.html

Syntactic heads

46 https://lena-voita.github.io/posts/acl19_heads.html

Rare Tokens

47

The Majority of the Heads Can be Pruned

๏ Later on in the paper, the authors let the model decide which heads it does not need (again, for
more details look in the paper or the blog post) and iteratively prunes attention heads, i.e. removes
them from the model. In addition to confirming that the specialized heads are the most important
(because the model keeps them intact and prunes the other ones), the authors find that most of
the heads can be removed without significant loss in quality.

๏ Why don't we train a model with a small number of heads to begin with?

๏ Well, you can't - the quality will be much lower. You need many heads in training to let them learn
all these useful things.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Drawbacks and Variants of
Transformers

49

What Would We Like to Fix about Transformer

๏ Quadratic compute in self-attention:

• Computing all pairs of interactions means our computation grows quadratically with the
sequence length!

• For recurrent models, it only grew linearly!

๏ Position representations:

• Are simple absolute indices the best we can do to represent position?

• Relative linear position attention [Shaw et al., 2018]

• Dependency syntax-based position [Wang et al., 2019]

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf

50

Quadratic Computation
๏ Self-attention is highly parallelizable.

๏ However, its total number of operations grows as , where T is the sequence length, and d
is the dimensionality.

๏ High complexity for long text.

๏ Can we build models like Transformers without paying the all-pairs self-attention cost?

<latexit sha1_base64="unEWGwPAPA46Ip01R8LxRbCOK04=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBahXkpSFD0WvXizQr+gjWWz2bRLN5uwuxFK6I/w4kERr/4eb/4bN20O2vpg4PHeDDPzvJgzpW372yqsrW9sbhW3Szu7e/sH5cOjjooSSWibRDySPQ8rypmgbc00p71YUhx6nHa9yW3md5+oVCwSLT2NqRvikWABI1gbqXtfbT3W/fNhuWLX7DnQKnFyUoEczWH5a+BHJAmp0IRjpfqOHWs3xVIzwumsNEgUjTGZ4BHtGypwSJWbzs+doTOj+CiIpCmh0Vz9PZHiUKlp6JnOEOuxWvYy8T+vn+jg2k2ZiBNNBVksChKOdISy35HPJCWaTw3BRDJzKyJjLDHRJqGSCcFZfnmVdOo157JmP1xUGjd5HEU4gVOoggNX0IA7aEIbCEzgGV7hzYqtF+vd+li0Fqx85hj+wPr8AfjCjqw=</latexit>

O(T 2
d)

51

Linformer
๏ Linformer: Self-Attention with Linear Complexity

52

Big Bird
๏ Big Bird: Transformers for Longer Sequences

53

More Transformer Variants

๏ (Survey) Efficient Transformers: a Survey, 2020

๏ (AAAI'21 Best Paper) Informer: Beyond Efficient Transformer for Long Sequence Time-Series
Forecasting

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

BERT

History and Background

56

Pre-training in NLP
๏Word embeddings are the basis of deep learning for NLP

๏Word embeddings (word2vec, GloVe) are often pre-trained on text corpus from
co-occurrence statistics

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

 king

 [-0.5, -0.9, 1.4, …]

 queen

 [-0.6, -0.8, -0.2, …]

 Inner Product

 the king wore a crown

 Inner Product

 the queen wore a crown

57

 open a bank account on the river bank

 [0.9, -0.2, 1.6, …]

 open a bank account

 [-1.9, -0.4, 0.1, …]

 on the river bank

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

Contextual Representations

[0.3, 0.2, -0.8, …]

๏Problem: Word embeddings are applied in a context free manner

๏Solution: Train contextual representations on text corpus

58
Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

History of Contextual Representations
๏ Semi-Supervised Sequence Learning, Google, 2015

59
Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

History of Contextual Representations
๏ELMo: Deep Contextual Word Embeddings, AI2 & University of Washington, 2017

60
Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

History of Contextual Representations
๏ Improving Language Understanding by Generative Pre-Training, OpenAI, 2018

(GPT)

61
Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

Model Architecture: Transformer Encoder

๏Multi-headed self attention
•Models context

๏Feed-forward layers
•Computes non-linear hierarchical features

๏Layer norm and residuals
•Makes training deep networks healthy

๏Positional embeddings
•Allows model to learn relative positioning

62
Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

Model Architecture: Transformer Encoder
Empirical advantages of Transformer vs. LSTM:
๏Self-attention == no locality bias

•Long-distance context has “equal opportunity”
๏Single multiplication per layer == efficiency on GPU/TPU

•Effective batch size is number of words, not sequences

BERT:
Bidirectional Encoder
Representations from

Transformers

64

BERT Overview

http://jalammar.github.io/illustrated-bert/

The two steps of how BERT is developed. You can download the model pre-trained in step 1
(trained on un-annotated data), and only worry about fine-tuning it for step 2. [Source for book icon].

https://commons.wikimedia.org/wiki/File:Documents_icon_-_noun_project_5020.svg

65
Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

Problem with Previous Methods

๏ Problem: Language models only use left context or right context, but
language understanding is bidirectional.

๏ Why are LMs unidirectional?
• Reason 1: Directionality is needed to generate a well-formed probability

distribution.
• Reason 2: Words can “see themselves” in a bidirectional encoder.

66

Unidirectional context
 Build representation incrementally

Bidirectional context
 Words can “see themselves”

 open

 Layer 2

 Layer 2

 <s>

 a

 Layer 2

 Layer 2

 open

 bank

 Layer 2

 Layer 2

 a

 open

 Layer 2

 Layer 2

 <s>

 a

 Layer 2

 Layer 2

 open

 bank

 Layer 2

 Layer 2

 a

Unidirectional vs. Bidirectional Models

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

67

 store gallon

 the man went to the [MASK] to buy a [MASK] of milk

Masked LM

๏Solution: Mask out k% of the input words, and then predict the masked words
(use 15%)

๏Too little masking: Too expensive to train
๏Too much masking: Not enough context

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

68

Masked LM

http://jalammar.github.io/illustrated-bert/

BERT's clever language modeling task masks 15% of words in the input and asks the model to predict the missing word.

69

Masked LM

๏Problem: Mask token never seen at fine-tuning
๏Solution: 15% of the words to predict, but don’t replace with [MASK] 100% of

the time. Instead:
๏80% of the time, replace with [MASK]
went to the store → went to the [MASK]

๏10% of the time, replace random word
went to the store → went to the running

๏10% of the time, keep same
went to the store → went to the store

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

70

Next Sentence Prediction

๏To learn relationships between sentences, predict whether Sentence B is actual
sentence that proceeds Sentence A, or a random sentence

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

71

Next Sentence Prediction

http://jalammar.github.io/illustrated-bert/

The second task BERT is pre-trained on is a two-sentence classification task. The tokenization is oversimplified in this graphic as BERT
actually uses WordPieces as tokens rather than words --- so some words are broken down into smaller chunks.

72

Input Representation

๏Use 30,000 WordPiece vocabulary on input.
๏Each token is sum of three embeddings.

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

73

More Details

๏Data: Wikipedia (2.5B words) + BookCorpus (800M words)
๏Batch Size: 131,072 words (1024 sequences * 128 length or 256 sequences *

512 length)
๏Training Time: 1M steps (~40 epochs)
๏Optimizer: AdamW, 1e-4 learning rate, linear decay
๏BERT-Base: 12-layer, 768-hidden, 12-head
๏BERT-Large: 24-layer, 1024-hidden, 16-head
๏Trained on 4x4 or 8x8 TPU slice for 4 days

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

74

Fine-Tuning Procedure

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

75

Fine-Tuning Procedure

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

76

BERT for Feature Extraction

http://jalammar.github.io/illustrated-bert/

77

BERT for Feature Extraction

http://jalammar.github.io/illustrated-bert/

78

Performance: GLUE

GLUE: https://gluebenchmark.com/

79

Performance: GLUE

GLUE: https://gluebenchmark.com/

80

 GLUE Results

Performance: GLUE

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

81

Performance: SQuAD 2.0

๏Use token 0 ([CLS]) to emit logit for “no answer”.
๏ “No answer” directly competes with answer span.
๏Threshold is optimized on dev set.

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

82

Effect of Pre-training Task

๏Masked LM (compared to left-to-right LM) is very important on some tasks, Next
Sentence Prediction is important on other tasks.

๏Left-to-right model does very poorly on word-level task (SQuAD), although this is
mitigated by BiLSTM.

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

83

Effect of Directionality and Training Time

๏Masked LM takes slightly longer to converge because we only predict 15% instead
of 100%

๏But absolute results are much better almost immediately

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

84

Effect of Model Size

๏Big models help a lot
๏Going from 110M -> 340M params helps even on datasets with 3,600 labeled

examples
๏ Improvements have not asymptoted

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

85

Open Source Release
๏One reason for BERT’s success was the open source release

•Minimal release (not part of a larger codebase)
•No dependencies but TensorFlow (or PyTorch)
•Abstracted so people could including a single file to use model
•End-to-end push-button examples to train SOTA models
• Thorough README
• Idiomatic code
•Well-documented code
•Good support (for the first few months)

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

A Few Post-BERT
Pre-training Advancements

87

RoBERTA
๏RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al, University of

Washington and Facebook, 2019)
๏Trained BERT for more epochs and/or on more data

•Showed that more epochs alone helps, even on same data
• More data also helps

๏ Improved masking and pre-training data slightly

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

88

 1024
 x
 100k

 vs.
 128
 x
 100k

 ⨉
 1024
 x
 128

ALBERT
๏ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

(Lan et al, Google and TTI Chicago, 2019)
๏ Innovation #1: Factorized embedding parameterization

•Use small embedding size (e.g., 128) and then project it to Transformer hidden
size (e.g., 1024) with parameter matrix

๏ Innovation #2: Cross-layer parameter sharing
•Share all parameters between Transformer layers

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

89

ALBERT
๏Results:

๏ ALBERT is light in terms of parameters, not speed

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

90

T5
๏Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

(Raffel et al, Google, 2019)

๏Ablated many aspects of pre-training:
•Model size
•Amount of training data
•Domain/cleanness of training data
•Pre-training objective details (e.g., span length of masked text)
•Ensembling
•Finetuning recipe (e.g., only allowing certain layers to finetune)
•Multi-task training

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

91

T5
๏Conclusions:

•Scaling up model size and amount of training data helps a lot
•Best model is 11B parameters (BERT-Large is 330M), trained on 120B words of

cleaned common crawl text
•Exact masking/corruptions strategy doesn’t matter that much
•Mostly negative results for better finetuning and multi-task strategies

๏T5 results on SuperGLUE: https://super.gluebenchmark.com/leaderboard/

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

https://super.gluebenchmark.com/leaderboard/

Distillation

93

Applying Models to Production Services
๏BERT and other pre-trained language models are extremely large and expensive
๏How are companies applying them to low-latency production services?

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

94

Distillation
๏Answer: Distillation (a.k.a., model compression)
๏ Idea has been around for a long time:

•Model Compression (Bucila et al, 2006)
•Distilling the Knowledge in a Neural Network (Hinton et al, 2015)

๏Simple technique:
• Train “Teacher”: Use SOTA pre-training + fine-tuning technique to train model with

maximum accuracy
•Label a large amount of unlabeled input examples with Teacher
• Train “Student”: Much smaller model (e.g., 50x smaller) which is trained to mimic

Teacher output
•Student objective is typically Mean Square Error or Cross Entropy

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

95

Distillation
๏Example distillation results

• 50k labeled examples, 8M unlabeled examples
๏Distillation works much better than pre-training + fine-tuning with smaller model

Well-Read Students Learn
Better: On the Importance of
Pre-training Compact Models

(Turc et al, 2020)

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

96

Distillation
๏Why does distillation work so well? A hypothesis:

• Language modeling is the “ultimate” NLP task in many ways
• I.e., a perfect language model is also a perfect question answering/entailment/

sentiment analysis model
• Training a massive language model learns millions of latent features which are

useful for these other NLP tasks
•Fine-tuning mostly just picks up and tweaks these existing latent features
•This requires an oversized model, because only a subset of the features are

useful for any given task
•Distillation allows the model to only focus on those features
•Supporting evidence: Simple self-distillation (distilling a smaller BERT model)

doesn’t work

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

Conclusions

98

Conclusions

๏Pre-trained bidirectional language models work incredibly well

๏However, the models are extremely expensive

๏ Improvements (unfortunately) seem to mostly come from even more expensive
models and more data

๏The inference/serving problem is mostly “solved” through distillation

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

99

Todo

๏ Suggested Readings: (No reading assignments for this week and next
week)
• [The original transformer paper] Attention Is All You Need (https://arxiv.org/

pdf/1706.03762.pdf)
• [BERT] BERT: Pre-training of Deep Bidirectional Transformers for Language

Understanding (https://arxiv.org/abs/1810.04805)
• Pre-trained Models for Natural Language Processing: A Survey (https://

arxiv.org/abs/2003.08271)
• Efficient Transformers: A Survey (https://arxiv.org/pdf/2009.06732.pdf)

100

References

1. https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
2. Stanford CS224N, Winter 2021: http://web.stanford.edu/class/cs224n/, lecture:

Transformers and Self-Attention For Generative Models
3. Talk of Jacob Devlin: Contextual Word Representations with BERT and Other Pre-

trained Language Models
4. http://jalammar.github.io/illustrated-bert/

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
http://web.stanford.edu/class/cs224n/
http://jalammar.github.io/illustrated-bert/

Thanks! Q&A
Bang Liu 
Email: bang.liu@umontreal.ca
Homepage: http://www-labs.iro.umontreal.ca/~liubang/

mailto:bang.liu@umontreal.ca
http://www-labs.iro.umontreal.ca/~liubang/

