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Recap: Mini-Lectures
๏The mini-lectures will take place at Feb 18th, Feb 22th and Feb 25th, with each 

class presenting 6~7 papers. After all groups decide their paper selection, we 
will release the presentation order on this Thursday. 

๏The mini-lecture presentation accounts for 3 reading assignments, which means 
it is worth 3 points of your final grade. Our evaluation will focus on the 
contents and clarity of your slides, and the quality of your presentation 
delivery. 

๏Each presentation should be no more than 17 minutes (~15min presentation + 
~2min Q&A). Please don't exceed this time limit, or it would occupy other 
groups' time and also may affect your presentation score. 

๏For each group, no matter when your presentation takes place, please submit 
your slides before 11:59am, Feb 18th (Fri.) in #mini-lectures Please indicate 
your group number in your file name (e.g., Group1_What Does BERT Look 
At.pdf). Late submission of the slides results in a -1 point penalty.
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Lecture outline

1. Transformer
2. BERT and a Few Variants



Transformer



Recap Attention 
Mechanism
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Recap Attentions
The most popular ways to compute attention scores are: 
• dot-product - the simplest method; 
• bilinear function  (aka "Luong attention") - used in the paper Effective Approaches to Attention-based 

Neural Machine Translation; 
• multi-layer perceptron (aka "Bahdanau attention") - the method proposed in the original paper.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1508.04025
https://arxiv.org/pdf/1409.0473.pdf
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Bahdanau Model

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
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Luong Model

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



Transformer:
Attention is All You Need
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What is Transformer
๏ A model introduced in the paper “Attention is All You Need” in 2017. 
๏ Based solely on attention mechanisms (i.e., no recurrence or convolutions). 
๏ Higher translation quality, faster to train.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



11 https://ai.googleblog.com/2017/08/transformer-novel-neural-network.htmlThe animation is from the Google AI blog post.

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
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What We Just Saw

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
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Why Such Design
๏ RNN won’t understand what “bank” means until they read the whole sentence. 
๏ Transformer’s encoder tokens interact with each other all at once.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



How to Implement
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Self-Attention: the "Look at Each Other" Part
๏ Self-attention is one of the key components of the model. 
๏ The difference between attention and self-attention is that self-attention operates between 

representations of the same nature: e.g., all encoder states in some layer.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
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Self-Attention: the "Look at Each Other" Part
๏ Self-attention is the part of the model where tokens interact with each other.  
๏ Each token "looks" at other tokens in the sentence with an attention mechanism, gathers context, 

and updates the previous representation of “self". 
๏ Note that in practice, this happens in parallel.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
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Query, Key, and Value in Self-Attention

๏ Each input token in self-attention receives three representations corresponding to the roles it can 
play: 

• query - asking for information; 

• key - saying that it has some information; 

• value - giving the information. 

๏ The query is used when a token looks at others - it's seeking the information to understand itself 
better.  

๏ The key is responding to a query's request: it is used to compute attention weights.  
๏ The value is used to compute attention output: it gives information to the tokens which "say" they 

need it (i.e. assigned large weights to this token).

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



18 https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
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Masked Self-Attention
"Don't Look Ahead" for the Decoder

๏ In the decoder, there's also a self-attention 
mechanism: it is the one performing the "look at the 
previous tokens" function. 

๏ In the decoder, self-attention is a bit different from 
the one in the encoder. While the encoder 
receives all tokens at once and the tokens can look 
at all tokens in the input sentence, in the decoder, 
we generate one token at a time: during 
generation, we don't know which tokens we'll 
generate in future. 

๏ To forbid the decoder to look ahead, the model uses 
masked self-attention: future tokens are masked 
out. Look at the illustration.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
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But How Can The Decoder Look Ahead?

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

๏ During generation, it can't - we don't know what comes next.  

๏ But in training, we use reference translations (which we know). Therefore, in training, we feed the 
whole target sentence to the decoder - without masks, the tokens would "see future", and this is not 
what we want. 

๏ This is done for computational efficiency: the Transformer does not have a recurrence, so all 
tokens can be processed at once. This is one of the reasons it has become so popular for machine 
translation - it's much faster to train than the once dominant recurrent models. For recurrent models, 
one training step requires O(len(source) + len(target)) steps, but for Transformer, it's O(1), i.e. 
constant.
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Multi-Head Attention
Independently Focus on Different Things

๏ Usually, understanding the role of a word in a 
sentence requires understanding how it is related to 
different parts of the sentence. 

๏ This is important not only in processing source 
sentence but also in generating target. For example, 
in some languages, subjects define verb inflection 
(e.g., gender agreement), verbs define the case of 
their objects, and many more. What I'm trying to say 
is: each word is part of many relations. 

๏ Therefore, we have to let the model focus on 
different things: this is the motivation behind Multi-
Head Attention. Instead of having one attention 
mechanism, multi-head attention has several 
"heads" which work independently.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
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Multi-Head Attention
Independently Focus on Different Things

๏ Formally, this is implemented as several attention mechanisms whose results are combined:

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
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Transformer: Model Architecture

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
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Transformer: Feed-forward Blocks

๏ In addition to attention, each layer has a feed-
forward network block: two linear layers with ReLU 
non-linearity between them: 

๏ After looking at other tokens via an attention 
mechanism, a model uses an FFN block to process 
this new information (attention - "look at other tokens 
and gather information", FFN - "take a moment to 
think and process this information").

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
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Transformer: Residual Connections
๏ Residual connections are very simple (add a 

block's input to its output), but at the same time 
are very useful: they ease the gradient flow through 
a network and allow stacking a lot of layers. 

๏ In the Transformer, residual connections are used 
after each attention and FFN block. On the 
illustration above, residuals are shown as arrows 
coming around a block to the yellow "Add & Norm" 
layer. In the "Add & Norm" part, the "Add" part 
stands for the residual connection.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

๏ Residual connections are thought to make the loss 
landscape considerably smoother (thus easier 
training!)

[Loss landscape visualiza1on, Li et al., 2018, on a ResNet] 

https://arxiv.org/pdf/1712.09913.pdf
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Transformer: Layer Normalization

๏ The "Norm" part in the "Add & Norm" layer denotes 
Layer Normalization. It independently normalizes 
vector representation of each example in batch - 
this is done to control "flow" to the next layer. Layer 
normalization improves convergence stability and 
sometimes even quality. 

๏ In the Transformer, you have to normalize vector 
representation of each token. Additionally, here 
LayerNorm has trainable parameters,  and 

, which are used after normalization to rescale 
layer's outputs (or the next layer's inputs). Note that  

 and  are evaluated for each example, but  
and  are the same - these are layer parameters.

<latexit sha1_base64="vlmSKKbuh14aOwIdJXmlxfC487U=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cKpi20oWy2k3bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+m/ntJ1SaJ/LRTFIMYjqUPOKMGiv5mlGB/WrNrbtzkFXiFaQGBZr96ldvkLAsRmmYoFp3PTc1QU6V4UzgtNLLNKaUjekQu5ZKGqMO8vmxU3JmlQGJEmVLGjJXf0/kNNZ6Eoe2M6ZmpJe9mfif181MdBPkXKaZQckWi6JMEJOQ2edkwBUyIyaWUKa4vZWwEVWUGZtPxYbgLb+8SloXde+q7j5c1hq3RRxlOIFTOAcPrqEB99AEHxhweIZXeHOk8+K8Ox+L1pJTzBzDHzifP923jrg=</latexit>

scale
<latexit sha1_base64="T7vz5agaDlm1hJs/x6PaXw7Nqzc=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoseiF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+UWltfWNzq7xd2dnd2z+oHh61TZxqylo0FrHuhsQwwRVrWW4F6yaaERkK1gknd7nfeWLa8Fg92mnCAklGikecEptLISdmUK15dW8OvEr8gtSgQHNQ/eoPY5pKpiwVxJie7yU2yIi2nAo2q/RTwxJCJ2TEeo4qIpkJsvmtM3zmlCGOYu1KWTxXf09kRBozlaHrlMSOzbKXi/95vdRGN0HGVZJapuhiUZQKbGOcP46HXDNqxdQRQjV3t2I6JppQ6+KpuBD85ZdXSfui7l/VvYfLWuO2iKMMJ3AK5+DDNTTgHprQAgpjeIZXeEMSvaB39LFoLaFi5hj+AH3+ABffjkU=</latexit>

bias
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https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
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Transformer: Positional Encoding

๏ Note that since Transformer does not contain 
recurrence or convolution, it does not know the 
order of input tokens.  

๏ Therefore, we have to let the model know the 
positions of the tokens explicitly. For this, we have 
two sets of embeddings: for tokens (as we always 
do) and for positions (the new ones needed for this 
model). Then input representation of a token is the 
sum of two embeddings: token and positional.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
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Transformer: Positional Encoding
๏ The positional embeddings can be learned, but the authors found that having fixed ones does not 

hurt the quality. The fixed positional encodings used in the Transformer are: 

๏ where  is position and  is the vector dimension. Each dimension of the positional encoding 
corresponds to a sinusoid, and the wavelengths form a geometric progression from 2π to 10000 · 2π.

<latexit sha1_base64="NecrS8lXD2y3gCX+avnoJKSs3kY=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0TJoYxnRmEByhL3NXLJkb/fY3RNCyE+wsVDE1l9k579xk1yhiQ8GHu/NMDMvSgU31ve/vcLK6tr6RnGztLW9s7tX3j94NCrTDBtMCaVbETUouMSG5VZgK9VIk0hgMxreTP3mE2rDlXywoxTDhPYljzmj1kn3qTLdcsWv+jOQZRLkpAI56t3yV6enWJagtExQY9qBn9pwTLXlTOCk1MkMppQNaR/bjkqaoAnHs1Mn5MQpPRIr7UpaMlN/T4xpYswoiVxnQu3ALHpT8T+vndn4KhxzmWYWJZsvijNBrCLTv0mPa2RWjByhTHN3K2EDqimzLp2SCyFYfHmZPJ5Vg4uqf3deqV3ncRThCI7hFAK4hBrcQh0awKAPz/AKb57wXrx372PeWvDymUP4A+/zB30qje4=</latexit>pos <latexit sha1_base64="+zurWilw9p5vBDmM8otw7laiJWA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzU4P1yxa26c5BV4uWkAjnq/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELuWShqh9rP5oVNyZpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTcmG4C2/vEpaF1Xvquo2Liu12zyOIpzAKZyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/gfP4A0M+M8Q==</latexit>

i

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
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Transformer: Positional Encoding

๏ Fixed positional encoding

• Pros: Periodicity indicates that maybe “absolute position” isn’t as important  

• Pros: Maybe can extrapolate to longer sequences as periods restart! 

• Cons: Not learnable; also the extrapolation doesn’t really work! 

๏ Learned absolute position representations

• Pros: Flexibility: each position gets to be learned to fit the data 

• Cons: Definitely can’t extrapolate to indices outside 1, ... , 𝑇. 

• Most systems use this. 

๏ Sometimes people try more flexible representations of position: 

• Relative linear position attention [Shaw et al., 2018] 

• Dependency syntax-based position [Wang et al., 2019]

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf
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Subword Segmentation: Byte Pair Encoding
๏ A model has a predefined vocabulary of tokens.  
๏ Tokens not in the vocabulary will be replaced with a special UNK ("unknown") token.  
๏ Therefore, if your tokens are words, you will be able to process a fixed number of words.  
๏ This is the fixed vocabulary problem : you will be getting lot's of unknown tokens, and your 

model won't translate them properly. 

๏ But how can we represent all words, even those we haven't seen in the training data?  
๏ Well, even if you are not familiar with a word, you are familiar with the parts it consists of - 

subwords (in the worst case, symbols). Then why don't we split the rare and unknown words into 
smaller parts?

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
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Subword Segmentation: Byte Pair Encoding
๏ The original Byte Pair Encoding (BPE) (Gage, 1994) is a simple data compression technique that 

iteratively replaces the most frequent pair of bytes in a sequence with a single, unused byte. What 
we refer to as BPE now is an adaptation of this algorithm for word segmentation. Instead of 
merging frequent pairs of bytes, it merges characters or character sequences. 

๏ BPE algorithm consists of two parts: 

• training - learn "BPE rules", i.e., which pairs of symbols to merge; 

• inference - apply learned rules to segment a text.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
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Training: Learn BPE Rules

๏ At this step, the algorithm builds a merge table and a vocabulary of tokens. The initial vocabulary 
consists of characters and an empty merge table. At this step, each word is segmented as a 
sequence of characters. After that, the algorithm is as follows: 

• count pairs of symbols: how many times each pair occurs together in the training data; 

• find the most frequent pair of symbols; 

• merge this pair - add a merge to the merge table, and the new token to the vocabulary. 

๏ In practice, the algorithm first counts how many times each word appeared in the data. Using this 
information, it can count pairs of symbols more easily. Note also that the tokens do not cross word 
boundary - everything happens within words.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
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Training: Learn BPE Rules
๏ Here I show you a toy example: here we assume that in training data, we met cat 4 times, mat 5 

times and mats, mate, ate, eat 2, 3, 3, 2 times, respectively. We also have to set the maximum 
number of merges we want; usually, it's going to be about 4k-32k depending on the dataset size, 
but for our toy example, let's set it to 5.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
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Inference: Segment a Text
๏ After learning BPE rules, you have a merge table - now, 

we will use it to segment a new text. 

๏ The algorithm starts with segmenting a word into a 
sequence of characters. After that, it iteratively makes 
the following two steps until no merge it possible: 

• among all possible merges at this step, find the 
highest merge in the table; 

• apply this merge. 

๏ Note that the merge table is ordered - the merges that 
are higher in the table were more frequent in the data. 
That's why in the algorithm, merges that are higher have 
higher priority: at each step, we merge the most 
frequent merge among all possible.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
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Make BPE Stochastic: Segment Words Differently
๏ The standard BPE segmentation is deterministic: at each 

step, it always picks the highest merge in the table. 
However, even with the same vocabulary, a word can have 
different segmentations, e.g. un relat ed, u n relate d, un 
rel ated, etc.). 

๏ Possible reasons why showing different segmentations of the 
same word can help a model are: 

• with different segmentations of a word, a model can better 
understand the subwords it consists of. Therefore, it can 
better understand word composition. 

• since only rare and unknown words are split into 
subwords, a model may not learn representations for 
subwords very well. With different segmentations, it will 
see subwords in many different contexts and will 
understand them better. 

• this may serve as a regularization - a model will learn not 
to over-rely on individual tokens and to consider a broader 
context (similar to the standard word dropout).

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
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BPE-Dropout
Drop Some Merges From The Merge Table

๏ BPE-Dropout: Simple and Effective Subword Regularization (ACL 2020). 
๏ The idea is very simple: if BPE is deterministic because we pick the highest merge, all we need to do 

is to (sometimes) pick other merges. For this, the authors randomly drop some merges (e.g., 10% of 
all merges) from the BPE merge table. In this case, the highest merge is sometimes dropped from the 
table, we'll have to pick the other one, and the segmentation will be different.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



Great Results with 
Transformers
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Great Results with Transformers

Vaswani et al., Attention Is All You Need

Machine Translation
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Great Results with Transformers

Liu et al. ICLR 2018: Generating Wikipedia by Summarizing Long Sequences

Document Generation

https://arxiv.org/pdf/1801.10198.pdf
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Great Results with Transformers

Vaswani et al., Attention Is All You Need

GLUE



Analysis and Interpretability
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Multi-Head Self-Attention
What are these heads doing?

๏ Multi-head attention is an inductive bias 
introduced in the Transformer. 

๏ When creating an inductive bias in a model, 
we usually have some kind of intuition for why 
we think this new model component, inductive 
bias, could be useful. 

๏ Therefore, it's good to understand how this 
new thing works - does it learn the things we 
thought it would? If not, why it helps? If yes, 
how can we improve it?

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
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The Most Important Heads are Interpretable
๏ Here we'll mention some of the results from the ACL 2019 paper Analyzing Multi-Head Self-

Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned. The authors look at 
individual attention heads in encoder's multi-head attention and evaluate how much, on average, 
different heads "contribute" to generated translations (for the details on how exactly they did this, 
look in the paper or the blog post). As it turns out, 

• only a small number of heads are important for translation, 

• these heads play interpretable “roles”. 

๏ These roles are: 

• positional: attend to a token's immediate neighbors, and the model has several such heads 
(usually 2-3 heads looking at the previous token and 2 heads looking at the next token); 

• syntactic: learned to track some major syntactic relations in the sentence (subject-verb, verb-
object); 

• rare tokens: the most important head on the first layer attends to the least frequent tokens in a 
sentence.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

https://www.aclweb.org/anthology/P19-1580/
https://www.aclweb.org/anthology/P19-1580/


https://lena-voita.github.io/posts/acl19_heads.html

Positional heads 
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subject -> verb verb -> subject

subject -> verb verb -> subject
https://lena-voita.github.io/posts/acl19_heads.html

Syntactic heads 



46 https://lena-voita.github.io/posts/acl19_heads.html

Rare Tokens 
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The Majority of the Heads Can be Pruned

๏ Later on in the paper, the authors let the model decide which heads it does not need (again, for 
more details look in the paper or the blog post) and iteratively prunes attention heads, i.e. removes 
them from the model. In addition to confirming that the specialized heads are the most important 
(because the model keeps them intact and prunes the other ones), the authors find that most of 
the heads can be removed without significant loss in quality.

๏ Why don't we train a model with a small number of heads to begin with? 

๏ Well, you can't - the quality will be much lower. You need many heads in training to let them learn 
all these useful things.

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



Drawbacks and Variants of 
Transformers
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What Would We Like to Fix about Transformer

๏ Quadratic compute in self-attention:

• Computing all pairs of interactions means our computation grows quadratically with the 
sequence length! 

• For recurrent models, it only grew linearly! 

๏ Position representations:

• Are simple absolute indices the best we can do to represent position? 

• Relative linear position attention [Shaw et al., 2018] 

• Dependency syntax-based position [Wang et al., 2019]

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf
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Quadratic Computation
๏ Self-attention is highly parallelizable. 

๏ However, its total number of operations grows as , where T is the sequence length, and d 
is the dimensionality. 

๏ High complexity for long text. 

๏ Can we build models like Transformers without paying the all-pairs self-attention cost?

<latexit sha1_base64="unEWGwPAPA46Ip01R8LxRbCOK04=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBahXkpSFD0WvXizQr+gjWWz2bRLN5uwuxFK6I/w4kERr/4eb/4bN20O2vpg4PHeDDPzvJgzpW372yqsrW9sbhW3Szu7e/sH5cOjjooSSWibRDySPQ8rypmgbc00p71YUhx6nHa9yW3md5+oVCwSLT2NqRvikWABI1gbqXtfbT3W/fNhuWLX7DnQKnFyUoEczWH5a+BHJAmp0IRjpfqOHWs3xVIzwumsNEgUjTGZ4BHtGypwSJWbzs+doTOj+CiIpCmh0Vz9PZHiUKlp6JnOEOuxWvYy8T+vn+jg2k2ZiBNNBVksChKOdISy35HPJCWaTw3BRDJzKyJjLDHRJqGSCcFZfnmVdOo157JmP1xUGjd5HEU4gVOoggNX0IA7aEIbCEzgGV7hzYqtF+vd+li0Fqx85hj+wPr8AfjCjqw=</latexit>

O(T 2
d)
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Linformer
๏ Linformer: Self-Attention with Linear Complexity
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Big Bird
๏ Big Bird: Transformers for Longer Sequences
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More Transformer Variants

๏ (Survey) Efficient Transformers: a Survey, 2020 

๏ (AAAI'21 Best Paper) Informer: Beyond Efficient Transformer for Long Sequence Time-Series 
Forecasting

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



BERT



History and Background
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Pre-training in NLP
๏Word embeddings are the basis of deep learning for NLP 

๏Word embeddings (word2vec, GloVe) are often pre-trained on text corpus from 
co-occurrence statistics

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

 king

 [-0.5, -0.9, 1.4, …]

 queen

 [-0.6, -0.8, -0.2, …]

 Inner Product

 the king wore a crown

 Inner Product

 the queen wore a crown
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 open a bank account on the river bank

 [0.9, -0.2, 1.6, …]

 open a bank account

 [-1.9, -0.4, 0.1, …]

 on the river bank

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

Contextual Representations

[0.3, 0.2, -0.8, …]

๏Problem: Word embeddings are applied in a context free manner 

๏Solution: Train contextual representations on text corpus
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Jacob Devlin,


Contextual Word Representations with BERT and Other Pre-trained Language Models

History of Contextual Representations
๏  Semi-Supervised Sequence Learning, Google, 2015
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Jacob Devlin,


Contextual Word Representations with BERT and Other Pre-trained Language Models

History of Contextual Representations
๏ELMo: Deep Contextual Word Embeddings, AI2 & University of Washington, 2017
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Jacob Devlin,


Contextual Word Representations with BERT and Other Pre-trained Language Models

History of Contextual Representations
๏ Improving Language Understanding by Generative Pre-Training, OpenAI, 2018 

(GPT)
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Jacob Devlin,


Contextual Word Representations with BERT and Other Pre-trained Language Models

Model Architecture: Transformer Encoder

๏Multi-headed self attention 
•Models context 

๏Feed-forward layers 
•Computes non-linear hierarchical features 

๏Layer norm and residuals 
•Makes training deep networks healthy 

๏Positional embeddings 
•Allows model to learn relative positioning
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Jacob Devlin,


Contextual Word Representations with BERT and Other Pre-trained Language Models

Model Architecture: Transformer Encoder
Empirical advantages of Transformer vs. LSTM: 
๏Self-attention == no locality bias 

•Long-distance context has “equal opportunity” 
๏Single multiplication per layer == efficiency on GPU/TPU 

•Effective batch size is number of words, not sequences



BERT:
Bidirectional Encoder 
Representations from

Transformers
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BERT Overview

http://jalammar.github.io/illustrated-bert/

The two steps of how BERT is developed. You can download the model pre-trained in step 1 
(trained on un-annotated data), and only worry about fine-tuning it for step 2. [Source for book icon].

https://commons.wikimedia.org/wiki/File:Documents_icon_-_noun_project_5020.svg
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Jacob Devlin,


Contextual Word Representations with BERT and Other Pre-trained Language Models

Problem with Previous Methods

๏ Problem: Language models only use left context or right context, but 
language understanding is bidirectional. 

๏ Why are LMs unidirectional? 
• Reason 1: Directionality is needed to generate a well-formed probability 

distribution. 
• Reason 2: Words can “see themselves” in a bidirectional encoder.
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Unidirectional context
 Build representation incrementally

Bidirectional context
 Words can “see themselves”

 open

 Layer 2

 Layer 2

 <s>

 a

 Layer 2

 Layer 2

 open

 bank

 Layer 2

 Layer 2

 a

 open

 Layer 2

 Layer 2

 <s>

 a

 Layer 2

 Layer 2

 open

 bank

 Layer 2

 Layer 2

 a

Unidirectional vs. Bidirectional Models

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models
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 store gallon

 the man went to the [MASK] to buy a [MASK] of milk

Masked LM

๏Solution: Mask out k% of the input words, and then predict the masked words 
(use 15%) 

๏Too little masking: Too expensive to train 
๏Too much masking: Not enough context

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models
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Masked LM

http://jalammar.github.io/illustrated-bert/

BERT's clever language modeling task masks 15% of words in the input and asks the model to predict the missing word.
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Masked LM

๏Problem: Mask token never seen at fine-tuning 
๏Solution: 15% of the words to predict, but don’t replace with [MASK] 100% of 

the time. Instead: 
๏80% of the time, replace with [MASK] 
went to the store → went to the [MASK] 

๏10% of the time, replace random word 
went to the store → went to the running 

๏10% of the time, keep same 
went to the store → went to the store

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models
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Next Sentence Prediction

๏To learn relationships between sentences, predict whether Sentence B is actual 
sentence that proceeds Sentence A, or a random sentence

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models
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Next Sentence Prediction

http://jalammar.github.io/illustrated-bert/

The second task BERT is pre-trained on is a two-sentence classification task. The tokenization is oversimplified in this graphic as BERT 
actually uses WordPieces as tokens rather than words --- so some words are broken down into smaller chunks.
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Input Representation

๏Use 30,000 WordPiece vocabulary on input. 
๏Each token is sum of three embeddings.

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models
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More Details

๏Data: Wikipedia (2.5B words) + BookCorpus (800M words) 
๏Batch Size: 131,072 words (1024 sequences * 128 length or 256 sequences * 

512 length) 
๏Training Time: 1M steps (~40 epochs) 
๏Optimizer: AdamW, 1e-4 learning rate, linear decay 
๏BERT-Base: 12-layer, 768-hidden, 12-head 
๏BERT-Large: 24-layer, 1024-hidden, 16-head 
๏Trained on 4x4 or 8x8 TPU slice for 4 days

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models
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Fine-Tuning Procedure

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models
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Fine-Tuning Procedure

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models
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BERT for Feature Extraction

http://jalammar.github.io/illustrated-bert/
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BERT for Feature Extraction

http://jalammar.github.io/illustrated-bert/
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Performance: GLUE

GLUE: https://gluebenchmark.com/
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Performance: GLUE

GLUE: https://gluebenchmark.com/
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 GLUE Results

Performance: GLUE

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models
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Performance: SQuAD 2.0

๏Use token 0 ([CLS]) to emit logit for “no answer”. 
๏ “No answer” directly competes with answer span. 
๏Threshold is optimized on dev set.

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models
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Effect of Pre-training Task

๏Masked LM (compared to left-to-right LM) is very important on some tasks, Next 
Sentence Prediction is important on other tasks. 

๏Left-to-right model does very poorly on word-level task (SQuAD), although this is 
mitigated by BiLSTM.

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models
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Effect of Directionality and Training Time

๏Masked LM takes slightly longer to converge because we only predict 15% instead 
of 100% 

๏But absolute results are much better almost immediately

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models
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Effect of Model Size

๏Big models help a lot 
๏Going from 110M -> 340M params helps even on datasets with 3,600 labeled 

examples 
๏ Improvements have not asymptoted

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models
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Open Source Release
๏One reason for BERT’s success was the open source release 

•Minimal release (not part of a larger codebase) 
•No dependencies but TensorFlow (or PyTorch) 
•Abstracted so people could including a single file to use model 
•End-to-end push-button examples to train SOTA models 
• Thorough README 
• Idiomatic code 
•Well-documented code 
•Good support (for the first few months)

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models



A Few Post-BERT
Pre-training Advancements
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RoBERTA
๏RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al, University of 

Washington and Facebook, 2019) 
๏Trained BERT for more epochs and/or on more data 

•Showed that more epochs alone helps, even on same data 
• More data also helps

๏ Improved masking and pre-training data slightly

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models
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 1024
    x
 100k

 vs.
 128
   x
 100k

 ⨉
 1024
   x
 128

ALBERT
๏ALBERT: A Lite BERT for Self-supervised Learning of Language Representations 

(Lan et al, Google and TTI Chicago, 2019) 
๏ Innovation #1: Factorized embedding parameterization

•Use small embedding size (e.g., 128) and then project it to Transformer hidden 
size (e.g., 1024) with parameter matrix 

๏ Innovation #2: Cross-layer parameter sharing
•Share all parameters between Transformer layers

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models
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ALBERT
๏Results: 

๏ ALBERT is light in terms of parameters, not speed

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models
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T5
๏Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer 

(Raffel et al, Google, 2019) 

๏Ablated many aspects of pre-training:
•Model size 
•Amount of training data 
•Domain/cleanness of training data 
•Pre-training objective details (e.g., span length of masked text) 
•Ensembling 
•Finetuning recipe (e.g., only allowing certain layers to finetune) 
•Multi-task training

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models
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T5
๏Conclusions: 

•Scaling up model size and amount of training data helps a lot 
•Best model is 11B parameters (BERT-Large is 330M), trained on 120B words of 

cleaned common crawl text 
•Exact masking/corruptions strategy doesn’t matter that much 
•Mostly negative results for better finetuning and multi-task strategies 

๏T5 results on SuperGLUE: https://super.gluebenchmark.com/leaderboard/

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models

https://super.gluebenchmark.com/leaderboard/


Distillation
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Applying Models to Production Services
๏BERT and other pre-trained language models are extremely large and expensive 
๏How are companies applying them to low-latency production services?

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models
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Distillation
๏Answer: Distillation (a.k.a., model compression) 
๏ Idea has been around for a long time: 

•Model Compression (Bucila et al, 2006) 
•Distilling the Knowledge in a Neural Network (Hinton et al, 2015) 

๏Simple technique: 
• Train “Teacher”: Use SOTA pre-training + fine-tuning technique to train model with 

maximum accuracy 
•Label a large amount of unlabeled input examples with Teacher 
• Train “Student”: Much smaller model (e.g., 50x smaller) which is trained to mimic 

Teacher output 
•Student objective is typically Mean Square Error or Cross Entropy

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models
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Distillation
๏Example distillation results 

• 50k labeled examples, 8M unlabeled examples 
๏Distillation works much better than pre-training + fine-tuning with smaller model

Well-Read Students Learn 
Better: On the Importance of 
Pre-training Compact Models 

(Turc et al, 2020)

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models
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Distillation
๏Why does distillation work so well? A hypothesis: 

• Language modeling is the “ultimate” NLP task in many ways  
• I.e., a perfect language model is also a perfect question answering/entailment/

sentiment analysis model 
• Training a massive language model learns millions of latent features which are 

useful for these other NLP tasks 
•Fine-tuning mostly just picks up and tweaks these existing latent features 
•This requires an oversized model, because only a subset of the features are 

useful for any given task 
•Distillation allows the model to only focus on those features 
•Supporting evidence: Simple self-distillation (distilling a smaller BERT model) 

doesn’t work

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models



Conclusions
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Conclusions

๏Pre-trained bidirectional language models work incredibly well 

๏However, the models are extremely expensive 

๏ Improvements (unfortunately) seem to mostly come from even more expensive 
models and more data 

๏The inference/serving problem is mostly “solved” through distillation

Jacob Devlin,

Contextual Word Representations with BERT and Other Pre-trained Language Models
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Todo

๏ Suggested Readings: (No reading assignments for this week and next 
week) 
• [The original transformer paper] Attention Is All You Need (https://arxiv.org/

pdf/1706.03762.pdf) 
• [BERT] BERT: Pre-training of Deep Bidirectional Transformers for Language 

Understanding (https://arxiv.org/abs/1810.04805) 
• Pre-trained Models for Natural Language Processing: A Survey (https://

arxiv.org/abs/2003.08271) 
• Efficient Transformers: A Survey (https://arxiv.org/pdf/2009.06732.pdf)
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